Chapter 10. Pairwise Randomized Experiments

이종진

Seoul National University
 ga0408@snu.ac.kr

July 19, 2022

Table of Contents

10.1 Introduction
10.2 The Children's Television Workshop Experiment data
10.3 Pairwise Randomized Experiments
10.4 Fisher's Exact P-values in Pairwise Randomized Experiments
10.5 The Analysis of Pairwise Randomized Experiments from Neyman's Repeated Sampling Perspective
10.6 Regression-Based Analysis of Pairwise Randomized Experiments
10.7 Model-Based Analysis of Pairwise Randomized Experiments
10.8 Conclusion

10.1 Introduction

- Pairwise Randomized Expereiments
- A special case of the stratified randomized experiments
- Each strata contain two units (1 unit for treatment group and 1 unit for control group)
- Two special features of this designed
- Only a single unit in each treatment and control group.
- Each stratum has the same proportion of treated units.

10.2 The Children's Television Workshop Experiment data

- Test for the effect of educuation television program aimed at improving reading skills.
- Several schools, a pair of two classes
- Pair / Treatment / Pre-test scores / Post-test scores

Pair	Treatment	Pre-Test Score	Post-Test Score	Normalized Rank
G_{i}	W_{i}	X_{i}	$Y_{i}^{\text {obs }}$	Post-Test Score
				R_{i}
1	0	12.9	54.6	-7.5
1	1	12.0	60.6	2.5
2	0	15.1	56.5	-4.5
2	1	12.3	55.5	5.5

10.3 Pairwise Randomized Experiments

- N : the number of units
- J: the number of strata
- $N(j)$: the number of units in j-th stratum, $j \in\{1, \ldots, J\}$
- $N_{t}(j)$: the number of treated unit in j-th stratum, $j \in\{1, \ldots, J\}$
- $N_{c}(j)$: the number of controlled unit in stratum j-th stratum, $j \in\{1, \ldots, J\}$
- G_{i} : the variable indicating pair where i-th units in, $G_{i} \in\{1, \ldots, J\}$

Pairwise Randomized Experiments

- $J=N / 2$
- $N(j)=2, N_{t}(j)=N_{c}(j)=1, j \in\{1, \ldots, J\}$
- $G_{i} \in\{1, \ldots, N / 2\}$
- The probability for any assignment vector W

$$
\begin{aligned}
& p(\mathrm{~W} \mid \mathrm{X}, \mathrm{Y}(0), \mathrm{Y}(1))=\prod_{j=1}^{N / 2}\binom{N(j)}{N_{t}(j)}^{-1}=\prod_{j=1}^{N / 2} \frac{1}{2}=2^{-N / 2}, \quad \text { for } \mathrm{W} \in \mathbb{W}^{+}, \\
& \text {where } \mathbb{W}^{+}=\left\{\mathrm{W} \mid \sum_{i: G_{i}=j} W_{i}=1 \text { for } j=1, \ldots, N / 2\right\} .
\end{aligned}
$$

Pairwise Randomized Experiments

- Denote arbitrary label of the two units within the pair as A and B.
- $W_{j, A}, W_{j, B}$: treatment indicators for these unit, $W_{j, A}=1-W_{j, B}$
- Define the pair of observed variables.
- $\left(Y_{j, A}(0), Y_{j, A}(1)\right),\left(Y_{j, B}(0), Y_{j, B}(1)\right)$ potential outcomes for units A and B in pair j

Pairwise Randomized Experiments

- Observed variable (A / B)

$$
Y_{j, A}^{\text {obs }}=\left\{\begin{array}{ll}
Y_{j, A}(0) & \text { if } W_{j, A}=0, \\
Y_{j, A}(1) & \text { if } W_{j, A}=1,
\end{array} \quad \text { and } \quad Y_{j, B}^{\text {obs }}= \begin{cases}Y_{j, B}(0) & \text { if } W_{j, A}=1 \\
Y_{j, B}(1) & \text { if } W_{j i, A}=0\end{cases}\right.
$$

- Observed variable (trt/ctrl)

$$
Y_{j, c}^{\text {obs }}=\left\{\begin{array}{ll}
Y_{j, A}^{\text {obs }} & \text { if } W_{i, A}=0, \\
Y_{j, B}^{\text {obs }} & \text { if } W_{i, A}=1,
\end{array} \quad \text { and } \quad Y_{j, t}^{\text {obs }}= \begin{cases}Y_{j, B}^{\text {obs }} & \text { if } W_{i, A}=0 \\
Y_{j, A}^{\text {obs }} & \text { if } W_{i, A}=1\end{cases}\right.
$$

Pairwise Randomized Experiments

- The average treatment effect within pair j

$$
\tau_{\text {pair }}(j)=\frac{1}{2} \sum_{i: G_{i}=j}\left(Y_{i}(1)-Y_{i}(0)\right)=\frac{1}{2}\left(\left(Y_{j, A}(1)-Y_{j, A}(0)\right)+\left(Y_{j, B}(1)-Y_{j, B}(0)\right)\right)
$$

- The finite-sample average treatment effect

$$
\tau_{\mathrm{fs}}=\frac{1}{N} \sum_{i=1}^{N}\left(Y_{i}(1)-Y_{i}(0)\right)=\frac{2}{N} \sum_{j=1}^{N / 2} \tau_{\text {pair }}(j)
$$

10.4 Fisher's Exact P-values in Pairwise Randomized Experiments

- Fisher null hypothesis

$$
H_{0}: \quad Y_{i}(0)=Y_{i}(1), \text { for all } i=1, \ldots, N
$$

$-T^{\text {dif }}$

$$
\begin{aligned}
T^{\mathrm{dif}} & =\left|\frac{1}{J} \sum_{j=1}^{J}\left(Y_{j, t}^{\mathrm{obs}}-Y_{j, c}^{\mathrm{obs}}\right)\right| \\
& =\left|\frac{2}{N} \sum_{j=1}^{N / 2}\left(W_{i, A} \cdot\left(Y_{j, A}^{\mathrm{obs}}-Y_{j, B}^{\mathrm{obs}}\right)+\left(1-W_{i, A}\right) \cdot\left(Y_{j, B}^{\mathrm{obs}}-Y_{j, A}^{\mathrm{obs}}\right)\right)\right| .
\end{aligned}
$$

- Identical statistics; $T^{\text {dif }}=\left|\bar{Y}_{\mathrm{t}}^{\text {obs }}-\bar{Y}_{\mathrm{c}}^{\text {obs }}\right|$, however, the p-value for this statistics will be different.

Rank-statistics

- R_{i} : normalized rank of $Y_{i}^{\text {obs }}$.
- $R_{j, A}$: corresponding a normalized rank for the given unit.
- T^{rank}

$$
T^{\mathrm{rank}}=\left|\bar{R}_{t}-\bar{R}_{c}\right|=\left|\frac{2}{N} \sum_{j=1}^{N / 2}\left(W_{j, A} \cdot\left(R_{j, A}-R_{j, B}\right)+\left(1-W_{j, A}\right) \cdot\left(R_{j, B}-R_{j, A}\right)\right)\right|
$$

- $T^{\text {rank,pair }}$

$$
T^{\text {rank,pair }}=\left|\frac{2}{N} \sum_{j=1}^{N / 2}\left(1_{Y_{j, t}^{\text {obs }}>Y_{j, c}^{\text {obs }}}-1_{Y_{j, t}^{\text {obs }}<Y_{j, c}^{\text {obs }}}\right)\right|
$$

- Substantial variation in the level of the outcomes between the pairs,

$$
T^{\text {rank,pair }}>T^{\text {rank }} \text { (power) }
$$

10.5 The Analysis of Pairwise Randomized Experiments from Neyman's

Repeated Sampling Perspective

- The estimator for average treatment effect in pair j,

$$
\hat{\tau}^{\mathrm{pair}}(j)=Y_{j, t}^{\mathrm{obs}}-Y_{j, c}^{\mathrm{obs}}=\sum_{i: G_{i}=j}\left(2 \cdot W_{i}-1\right) \cdot Y_{i}^{\mathrm{obs}}
$$

- The estimator for finite-sample average treatment effect,

$$
\hat{\tau}^{\mathrm{fs}}=\frac{1}{N / 2} \sum_{j=1}^{N / 2} \hat{\tau}^{\text {pair }}(j)=\bar{Y}_{\mathrm{t}}^{\mathrm{obs}}-\bar{Y}_{\mathrm{c}}^{\mathrm{obs}}
$$

- The sampling variance

$$
\mathbb{V}_{W}\left(\hat{\tau}^{\mathrm{fs}}\right)=\frac{1}{(N / 2)^{2}} \sum_{j=1}^{N / 2}\left(S_{c}^{2}(j)+S_{t}^{2}(j)-\frac{S_{c t}^{2}(j)}{2}\right)
$$

where $S_{c}^{2}(j)=\sum_{i: G_{i}=j}\left(Y_{i}(0)-\bar{Y}_{j}(0)\right)^{\mathbf{2}}=\frac{1}{2} \cdot\left(Y_{j, A}(0)-Y_{j, B}(0)\right)^{2}$,
$S_{t}^{2}(j)=\sum_{i: G_{i}=j}\left(Y_{i}(1)-\bar{Y}_{j}(1)\right)^{2}=\frac{1}{2} \cdot\left(Y_{j, A}(1)-Y_{j, B}(1)\right)^{2}$,
$S_{c t}^{2}(j)=\frac{1}{2} \cdot\left(\left(Y_{j, A}(1)-Y_{j, A}(0)\right)-\left(Y_{j, B}(1)-Y_{j, B}(0)\right)\right)^{2}$,
$\bar{Y}_{j}(0)=\frac{1}{2} \cdot\left(Y_{j, A}(0)+Y_{j, B}(0)\right)$ and $\bar{Y}_{j}(1)=\frac{1}{2} \cdot\left(Y_{j, A}(1)+Y_{j, B}(1)\right)$

Neyman sampling variance

- The Neyman sampling variance

$$
\hat{\mathbb{V}}^{\text {neyman }}\left(\hat{\tau}^{\mathrm{fs}}\right)=\frac{1}{(N / 2)^{2}} \sum_{j=1}^{N / 2}\left(s_{c}^{2}(j)+s_{t}^{2}(j)\right)
$$

where $s_{c}^{2}(j)=\frac{1}{N_{c}(j)-1} \sum_{i: G_{i}=j, W_{i}=0}\left(Y_{i}^{\text {obs }}-\bar{Y}_{c}^{\text {obs }}\right)^{2}$ and $s_{t}^{2}(j)=\frac{1}{N_{\mathrm{t}}(j)-1} \sum_{i: G_{i}=j, W_{i}=1}\left(Y_{i}^{\text {obs }}-\bar{Y}_{\mathrm{t}}^{\mathrm{obs}}\right)^{2}$.

- $s_{c}^{2}(j)$ and $s_{t}^{2}(j)$ can not be used.

Solution

- Treatment effect is constant and across pairs

$$
\tau_{\text {pair }}(j)=\tau_{\mathrm{S}} \text { for all } j
$$

- The sampling variance can be written

$$
\mathbb{V}_{W}\left(\hat{\tau}^{\mathrm{fs}}\right)=\frac{1}{(N / 2)^{2}} \sum_{j=1}^{N / 2}\left(S_{c}^{2}(j)+S_{t}^{2}(j)-\frac{S_{c t}^{2}(j)}{2}\right)=\frac{4}{N} \cdot S^{2}
$$

where $S^{2}:=S^{2}(j)=S_{t}^{2}(j)=S_{c}^{2}(j)$ for all j.

- It can be estimated by

$$
\hat{\mathbb{V}}^{\text {pair }}\left(\hat{\tau}^{\mathrm{fs}}\right)=\frac{4}{N \cdot(N-2)} \cdot \sum_{j=1}^{N / 2}\left(\hat{\tau}^{\text {pair }}(j)-\hat{\tau}^{\mathrm{fs}}\right)^{2}
$$

- The fact from the thm 10.1

$$
\mathbb{E}\left[\hat{\mathbb{V}}^{\text {pair }}\left(\hat{\tau}^{\mathrm{fs}}\right)\right]=\mathbb{V}_{W}\left(\hat{\tau}^{\mathrm{fs}}\right)+\frac{4}{N \cdot(N-2)} \cdot \sum_{j=1}^{N / 2}\left(\tau_{\text {pair }}(j)-\tau\right)^{2}
$$

- Heterogenity in the treatment effects \rightarrow upwardly biased and C.I. will be conservative.

10.6 Regression-Based Analysis of Pairwise Randomized Experiments

- Primary difference
- Outcome of regression ($\tau^{\text {pair }}(j)=Y_{j, t}-Y_{j, c}$)
- Consider pair as the unit of analysis.
- $\tau^{\text {pair }}(j)=\tau_{\text {sp }}+\varepsilon_{j} .\left(\tau_{\text {sp }}=\mathbb{E}_{\text {sp }}\left[\tau_{\text {pair }}(j)\right]\right)$
- How to include additional covariates

$$
\begin{aligned}
& -\Delta_{X, j}=\left(W_{j, A} \cdot\left(X_{j, A}-X_{j, B}\right)+\left(1-W_{j, A}\right) \cdot\left(X_{j, B}-X_{j, A}\right)\right) \\
& -\bar{X}_{j}=\left(X_{j, A}+X_{j, B}\right) / 2
\end{aligned}
$$

- The general version of regression model

$$
\tau^{\text {pair }}(j)=\tau+\beta \cdot \Delta_{X, j}+\gamma \cdot\left(\bar{X}_{j}-\bar{X}\right)+\varepsilon_{j}
$$

10．7 Model－Based Analysis of Pairwise Randomized Experiments

－Model－based imputation approach
－Little different from that for the case of stratified randomized experiments．
－One unit（trt／crtl）\rightarrow Not flexible to specify the joint distributions of the potential outcomes
－Some structure on the variance within pairs，such as a hierarchical structure

Hierarchical Structure

- Independent priors for $\mu, \sigma_{\mu}^{2}, \sigma_{c}^{2}, \sigma_{t}^{2}, \gamma$, and β
- Conditional on pair indicators, covariates, and parameters.

$$
\begin{aligned}
& \left.\binom{Y_{i}(0)}{Y_{i}(1)} \right\rvert\, G_{i}=j, X_{i}=x, \mu(1), \ldots, \mu(N / 2), \gamma, \beta, \sigma_{c}^{2}, \sigma_{t}^{2} \\
& \sim \mathcal{N}\left(\binom{\mu(j)+x \cdot \beta}{\mu(j)+\gamma+x \cdot \beta},\left(\begin{array}{cc}
\sigma_{c}^{2} & 0 \\
0 & \sigma_{t}^{2}
\end{array}\right)\right)
\end{aligned}
$$

- Specification for the pair-specific means

$$
\left.\left(\begin{array}{c}
\mu(1) \\
\vdots \\
\mu(N / 2)
\end{array}\right) \right\rvert\, \mathrm{G}, \mathrm{X}, \mathrm{~W}, \gamma, \beta, \sigma_{c}^{2}, \sigma_{t}^{2}, \mu \sim \mathcal{N}\left(\left(\begin{array}{c}
\mu \\
\vdots \\
\mu
\end{array}\right),\left(\begin{array}{ccc}
\sigma_{\mu}^{2} & \ldots & 0 \\
\vdots & \ddots & \vdots \\
0 & \ldots & \sigma_{\mu}^{2}
\end{array}\right)\right)
$$

10．8 Conclusion

－The Fisher exact p－value is conceptually not affected
－The Neyman repeated sampling variance
－A homogeneity of treatment effect．
－In the regression analyses
－Regression outcome and pair as the unit of analysis．
－Model－based analyses are modified
－A hierarchical structure

The End

